# ACS-1803 Introduction to Information Systems

Instructor: Kevin Robertson

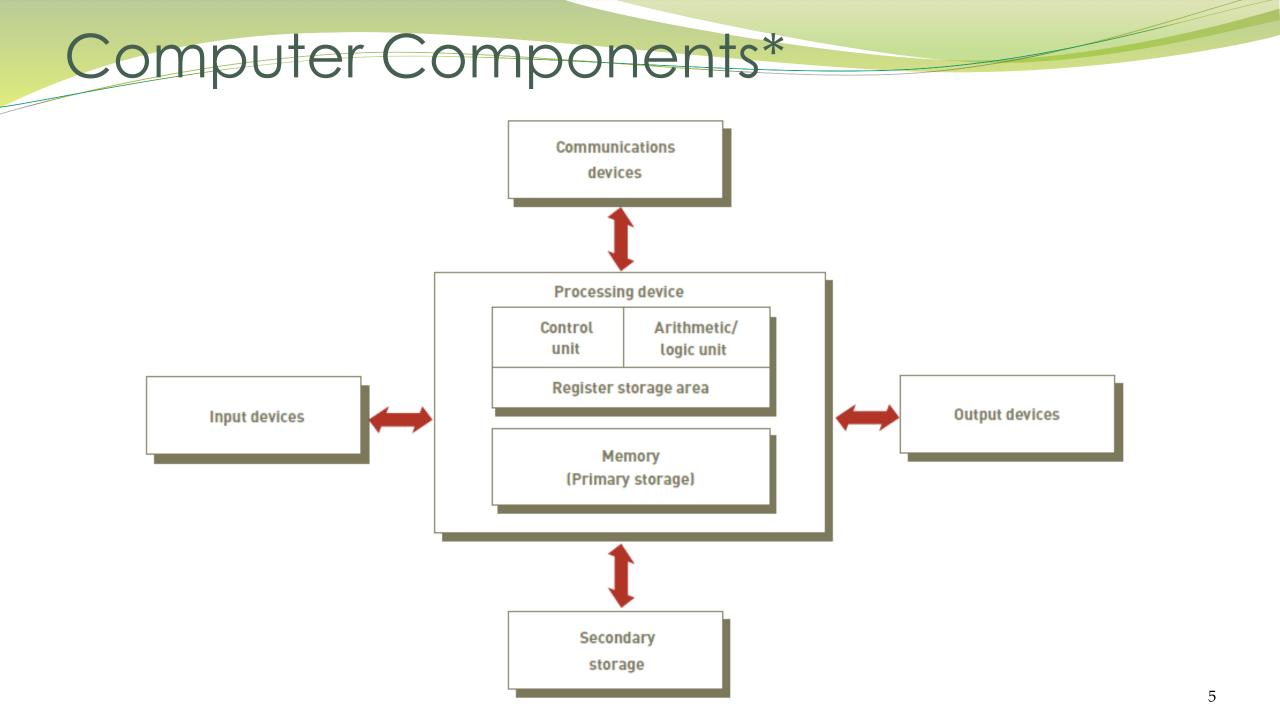
#### Introducing the Computer Lecture Outline 9-1

Computer Components and Processing Functions

## Introduction to the Computer\*

Information processor capable of performing electronically substantial computations including numerous arithmetic or logical operations without intervention by a human operator


Basic architecture:


#### CENTRAL INPUT → PROCESSING → OUTPUT UNIT + MAIN MEMORY (internal) | | | | | | | AUXILIARY STORAGE (external)

#### **Computer Components\***

- Central processing unit (CPU):
  - Arithmetic/logic unit (ALU): Performs mathematical calculations and makes logical comparisons
  - Control unit: Sequentially accesses program instructions, decodes them, and coordinates the flow of data in and out of the ALU, registers, primary storage, and even secondary storage and various output devices
  - Register: Small memory location where instructions to be processed are stored.

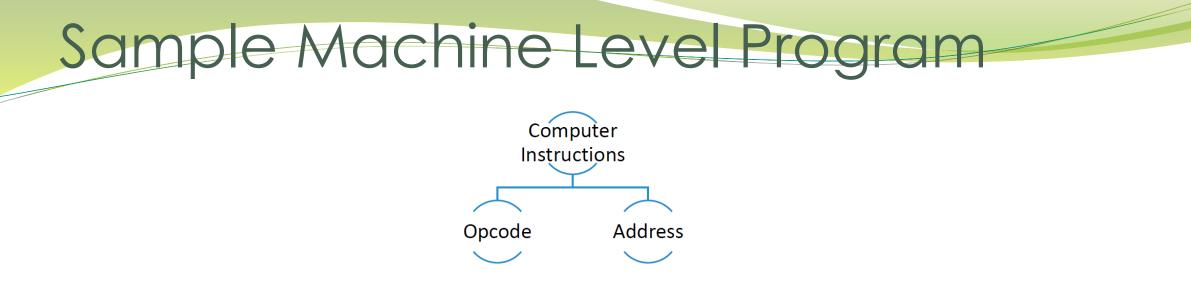






## Processing Characteristics and Functions

- Clock speed:
  - Series of electronic pulses produced at a predetermined rate that affects machine cycle time
  - Often measured in:
    - Megahertz (MHz): millions of cycles per second
    - Gigahertz (GHz): billions of cycles per second
- Physical characteristics of the CPU
  - Most CPUs are collections of digital circuits imprinted on silicon wafers, or chips, each no bigger than the tip of a pencil eraser


#### Memory Characteristics and Functions\*

- Memory:
  - Provides the CPU with a working storage area for programs and data
  - Rapidly provides data and instructions to the CPU
- Storage capacity:
  - Eight bits together form a *Byte*

#### Main Memory and Instructions

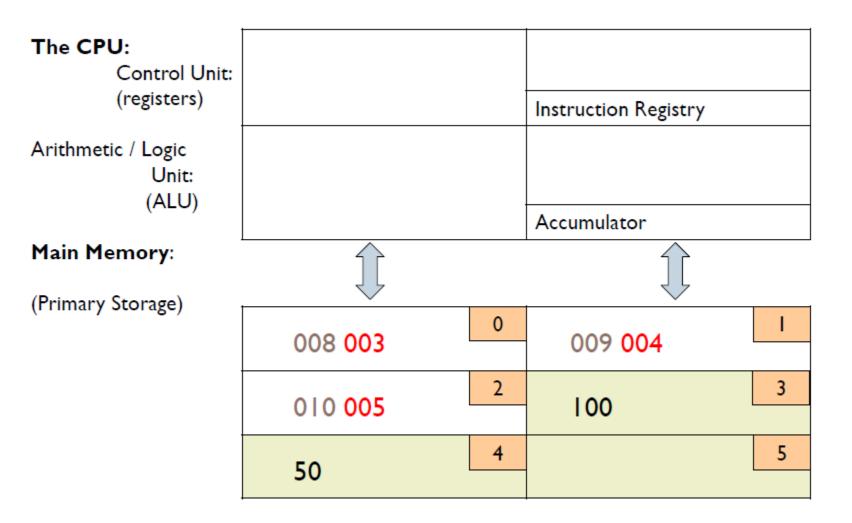
#### • Cells in main memory hold

- *instructions* and *data* for the instructions
- both in electronic form
- Instructions for the CPU
  - tell it to perform sequences of very basic operations
  - e.g., *add*, *subtract*, *multiply*, *divide*, *move*, *store* these are the only kind of instructions that the computer can actually execute
- Every major problem that we want the computer to solve must be broken down into a series of instructions at this simple level

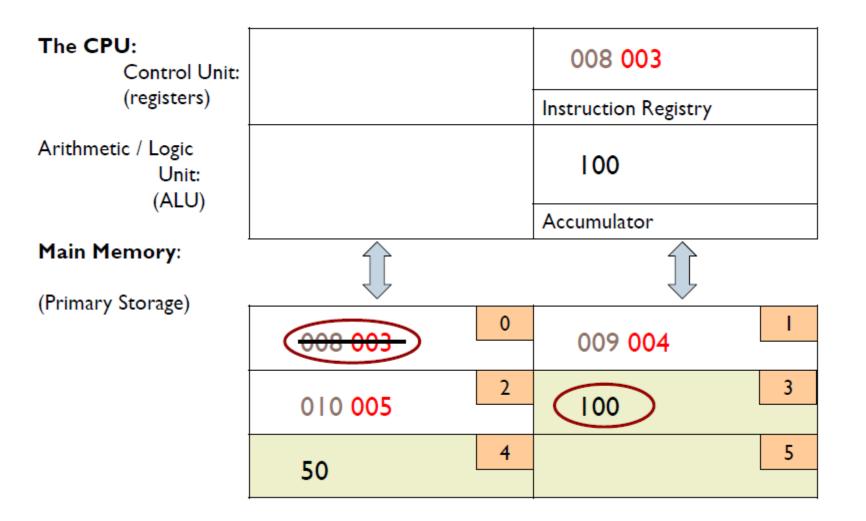


- Instruction for a computer: **opcode + address**
- Opcodes (engineers decide on these):
  - 008 clear accumulator and add to it the contents of the main memory address that follows this opcode
  - 009 add to the accumulator the contents of the main memory address that follows this opcode
  - 010 store the result from the accumulator in the main memory address that follows this opcode
- example of an instruction: **008 003**

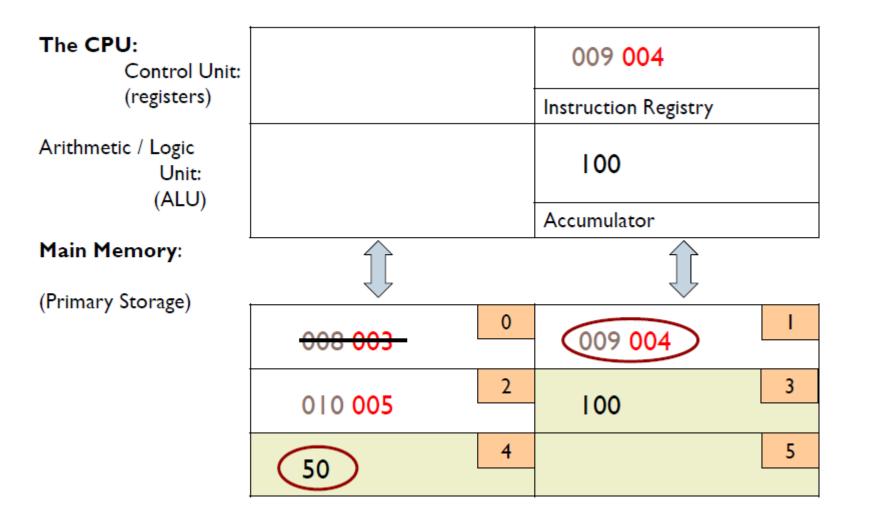
# Machine Level Program - 1st


#### Generation

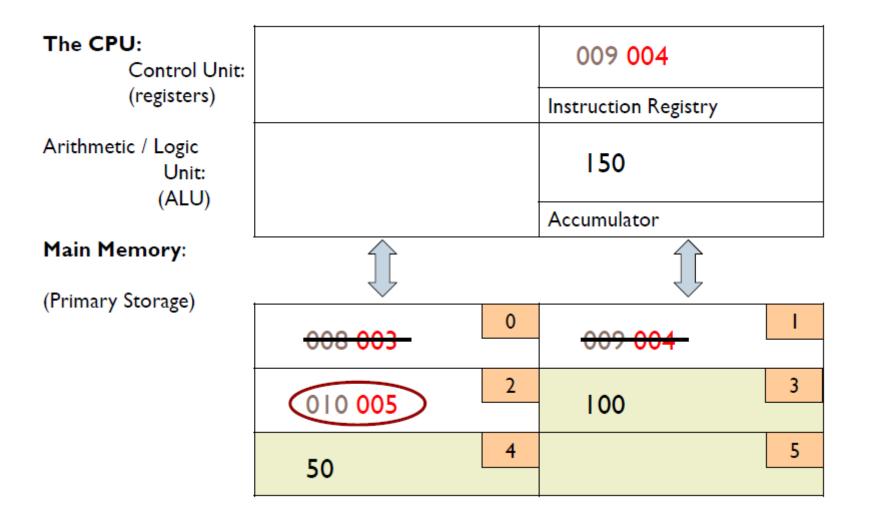
- Instruction is : 008 003
- 008 load into accumulator in ALU
- 003 whatever is in address (cell) 3 in memory


| program: memory cell |             | 0: | 008 003 |  |
|----------------------|-------------|----|---------|--|
|                      |             | 1: | 009 004 |  |
|                      |             | 2: | 010 005 |  |
| data:                | memory cell | 3: | 000 100 |  |
|                      | memory cell | 4: | 000 050 |  |

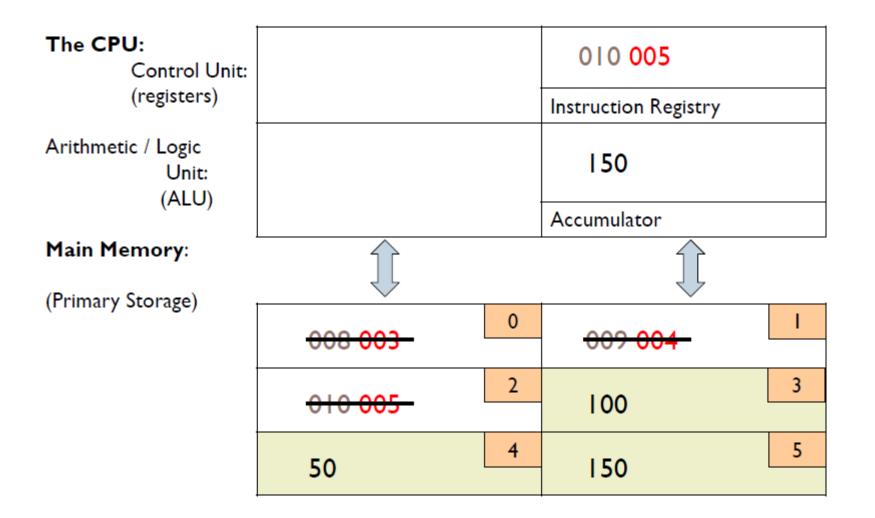
Instructions are transferred, from memory into the CPU's control unit, one by one, where they are placed in a register and decoded by "wires"


#### **Basic Instruction Process**




**Basic Instruction Process** 




**Basic Instruction Process** 



Sample Machine Level Program



Sample Machine Level Program



- The machine fetches instructions (from memory), decodes and executes (in CPU) and stores results of the execution (in memory)
  - example of an instruction for CPU: 008 003
- However, such an instruction must be represented electronically, ONLY in terms of + or -
  - 008 003 (base 10)
  - 1000 0011(base 2) +--- --++ (electronic form)
    - This is how the instruction looks in the machine

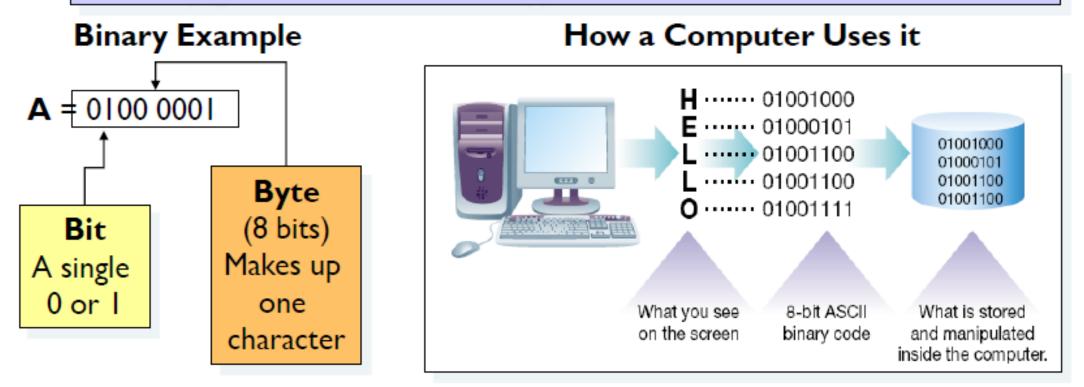
| Base 10         | Base 2                |                 |
|-----------------|-----------------------|-----------------|
| Decimal pattern | <b>Binary numbers</b> | Electronic form |
| 0               | 0                     | -               |
| 1               | 1                     | +               |
| 2               | 10                    | + -             |
| 3               | 11                    | + +             |
| 4               | 100                   | +               |
| 5               | 101                   | + - +           |
| 6               | 110                   | + + -           |
| 7               | 111                   | + + +           |
| 8               | 1000                  | +               |
| 9               | 1001                  | + +             |

- Base 10 -> Use 10 different digits to represent numbers
- Base 2 -> Use only two digits to represent numbers
  - **11111**(carried digits)
  - 01101 (13)
  - +10110 (23)
  - 100100 = 36

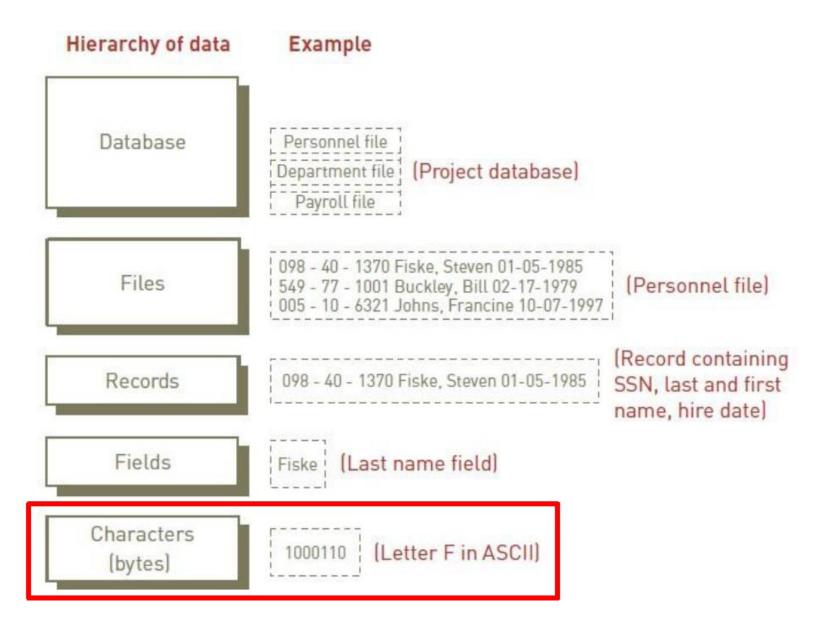
Binary is a base-2 system, each digit represents an increasing power of 2, with the rightmost digit representing 2<sup>0</sup>, the next representing 2<sup>1</sup>, then 2<sup>2</sup>, and so on.T To determine the decimal representation of a binary number simply take the sum of the products of the binary digits and the powers of 2 which they represent. For example, the binary number 100100 is converted to decimal form as follows: =  $[(1) \times 2^5] + [(0) \times 2^4] + [(0) \times 2^3] + [(1) \times 2^2] + [(0) \times 2^1] + [(0) \times 2^0]$ =  $[1 \times 32] + [0 \times 16] + [0 \times 8] + [1 \times 4] + [0 \times 2] + [0 \times 1]$ 100100<sub>2</sub> =  $36_{10}$ 

- Instructions at this level (+ and -) are said to be in machine language
- Earliest programs were written in machine language (first generation language)
- Then, a coding system was developed
- Each character on keyboard is represented by a specific sequence of 0s and 1s
- ASCII or EBCDIC agreed upon coding schemes

#### Processing - Language\*

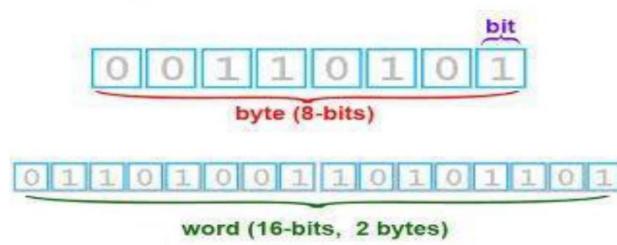

#### American Standard Code for Information Interchange (ASCII)

|           |                     |           |                     | 0 \ /                                     |
|-----------|---------------------|-----------|---------------------|-------------------------------------------|
| Character | ASCII-8 Binary Code | Character | ASCII-8 Binary Code | Types of Binary                           |
| A         | 0100 0001           | S         | 0101 0011           | Micro Computers                           |
| в         | 0100 0010           | Т         | 0101 0100           |                                           |
| c `´      | 0100 0011           | U         | 0101 0101           | ASCII - 8 bit                             |
| D         | 0100 0100           | v         | 0101 0110           | <ul> <li>Extended – 8 bit</li> </ul>      |
| E         | 0100 0101           | w         | 0101 0111           |                                           |
| F         | 0100 0110           | X         | 0101 1000           | Mainframe Computers                       |
| G         | 0100 0111           | Y         | 0101 1001           | EBCIDIC – 8 bit                           |
| H         | 0100 1000           | Z         | 0101 1010           |                                           |
| Ι         | 0100 1001           | 0         | 0011 0000           | <ul> <li>Extended Binary Coded</li> </ul> |
| J         | 0100 1010           | 1         | 0011 0001           | Decimal Interchange Code                  |
| K         | 0100 1011           | 2         | 0011 0010           | Other Types                               |
| L         | 0100 1100           | 3         | 0011 0011           |                                           |
| М         | 0100 1101           | 4         | 0011 0100           | <ul> <li>Unicode – 16 bit</li> </ul>      |
| N         | 0100 1110           | 5         | 0011 0101           | Universal Character Set                   |
| 0         | 0100 1111           | 6         | 0011 0110           |                                           |
| P         | 0101 0000           | 7         | 0011 0111           | Used for international                    |
| Q         | 0101 0001           | 8         | 0011 1000           | languages                                 |
| R         | 0101 0010           | 9         | 0011 1001           |                                           |


#### Processing - Language

#### Binary or Machine Language (First General Language)

- The language that all computers use
- IT is expressed in 0s or 1s only (see below)
- Binary utilizes Base-2 math to convert from normal characters to binary code (e.g.A = 0100 0001 in binary)




#### Hierarchy of Data

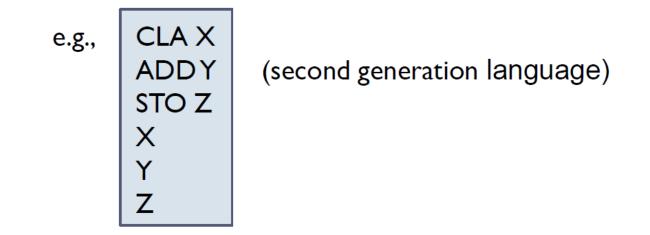


## Unit of Digital Measure

- Bit (a binary digit):
  - Circuit that is either on (1) or off (0)
- Byte:
  - Made up of eight (8) bits
- Character:
  - Basic building block of information two (2) or more bytes



## Memory Characteristics and Functions\*


| Name      | Abbreviation | Number of Bytes                                          |
|-----------|--------------|----------------------------------------------------------|
| Byte      | В            | 1                                                        |
| Kilobyte  | KB           | 2 <sup>10</sup> or approximately 1,024 bytes             |
| Megabyte  | MB           | 2 <sup>20</sup> or 1,024 kilobytes (about 1 million)     |
| Gigabyte  | GB           | 2 <sup>30</sup> or 1,024 megabytes (about 1 billion)     |
| Terabyte  | ТВ           | 2 <sup>40</sup> or 1,024 gigabytes (about 1 trillion)    |
| Petabyte  | PB           | 2 <sup>50</sup> or 1,024 terabytes (about 1 quadrillion) |
| Exabyte   | EB           | 260 or 1,024 petabytes (about 1 quintillion)             |
| Zettabyte | ZB           | 2 <sup>70</sup> or 1,024 exabytes (about 1 sextillion)   |
| Yottabyte | YB           | 2 <sup>80</sup> or 1,024 zetabytes (about 1 septillion)  |

# How did a coding system make programming easier?

Now **programs could be written in symbolic machine language** (assembly language) **because** *letters could be entered into a computer* **in 0s and 1s** 

How would you write your first name in Binary?

## Assembly Language – Second Generation



#### • ADDING TWO NUMERS IN ASSEMBLY LANGUAGE

• A translation program [assembler], itself in machine language, would translate this code into actual machine language for the CPU

#### Translating Assembly Language

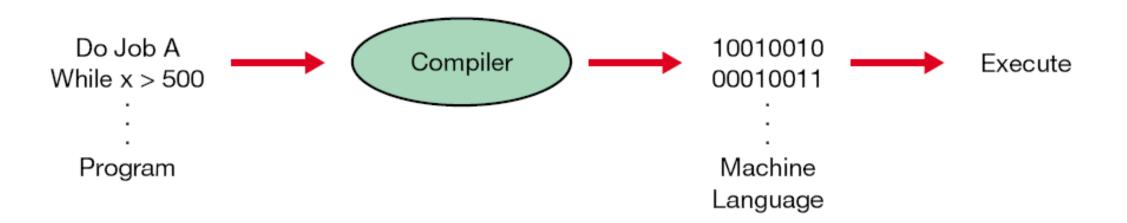
 Programmer writes CLA X Machine receives

0100 0011 0100 1100 0100 0001 0101 1001 C L A X

(if there was no ascii we couldn't get this in)

 Assembler program translates this to: 1000 0011 (008 003) [equivalent machine language instruction]

## Higher Level Languages


- Assembly language [second generation] low level:
  - **one** statement in assembly language
  - translates into
  - **one** statement in machine language
- A complicated, "real world" problem, still had to be broken down into small steps for the CPU
- Then came third generation languages (high-level)
  - **one** statement in 3GL
  - translates into
  - **many** statements in machine language

#### **Compilers and Interpreters**

#### Compilers

• Highly-specialized software applications are used to convert program instructions (source code) into the machine code (object code) prior to being loaded into a computer's secondary storage

Compiler Example



#### Program to Add Two Numbers

First GL Machine Language: 1000 0011 1001 0100 1010 0101

Second GL Assembly Language: CLA X ADDY STO Z Х Y Ζ

#### Third Generation Languages

- Not necessary to think at the level of a machine
- Translation program [compiler or interpreter] translates 3GL to machine language
- However, in a 3 GL, we still have to tell the computer both
- WHAT to do <u>and</u> HOW to do it.
- We call this **PROCEDURAL** Language
- Different 3 GL's:
  - COBOL(business)
  - FORTRAN(scientific), BASIC, PASCAL C, C++, C#, JAVA

Each 3GL has different grammar; suited to different problems

#### Program to Add Two Numbers

• FORTRAN 3rd Generation Language:

 $\mathbf{Z} = \mathbf{X} + \mathbf{Y}$ 

(will be translated to mach. language by FORTRAN compiler)

#### • COBOL 3rd Generation Language: ADD Y TO X GIVING Z.

(will be translated to machine language by COBOL compiler)

### Fourth Generation Languages\*

- Much more user-friendly
- Tell the computer WHAT to do but <u>not HOW</u> to do it: **NON-PROCEDURAL**
- Eg: average <list of numbers> exist only for specific problems / uses
- Different 4GLs:
  - DOS
  - dBASE
  - SQL
  - PowerBuilder

## Fourth Generation Computing

- We can also call common application software
  - Word processing
  - Spreadsheets
  - Web browsers
  - Multimedia programs
- Fourth generation (non-procedural) software [WHAT to do; not HOW] *but they are not, properly, languages* 
  - Sometimes called productivity tools
  - They use a **GRAPHICAL USER INTERFACE**

## Procedural and Non-procedural Computing

#### • PROCEDURAL (3<sup>rd</sup> Generation Language)

- Need to tell the computer **WHAT** you want **and HOW** to do it (how to *proceed*)
- Need to have an *algorithm* for the problem (sequence of logical steps necessary to solve the problem)
- Need to **code the algorithm** in a procedural (3rd Gen) language

#### • NON-PROCEDURAL (4<sup>th</sup> Generation Language)

• Tell the computer what to do, **but not** how to do it.

## Finding the Average of Numbers

• AVERAGE: 232, 452, 554, 667, 932, 122;

#### • The Algorithm:

- NNum = 0; SumNum=0
- While there are numbers to read
  - Read a number
  - Add 1 to NNum
  - Add the number to SumNum
- End While
- Average = SumNum / NNum
- Print "Average is: ", Average

## Coding the Algorithm

- The algorithm (set of steps) will now be coded in a procedural language: C language?
- This program tells the computer HOW to find the average
- The program will be compiled to machine language and run on a computer

# Finding Average in Non-procedural Language

#### • AVERAGE: 232, 452, 554, 667, 932, 122;

- that's it!
- who told the computer how to do this??

#### • OR

- Type in the numbers into a box
- Click a button for "Average" (using GUI)

#### First to Second Generation Languages

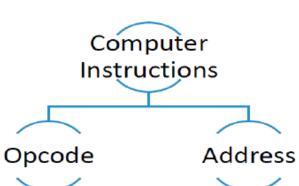
# I<sup>st</sup> GL

Machine Language:

1000 0011

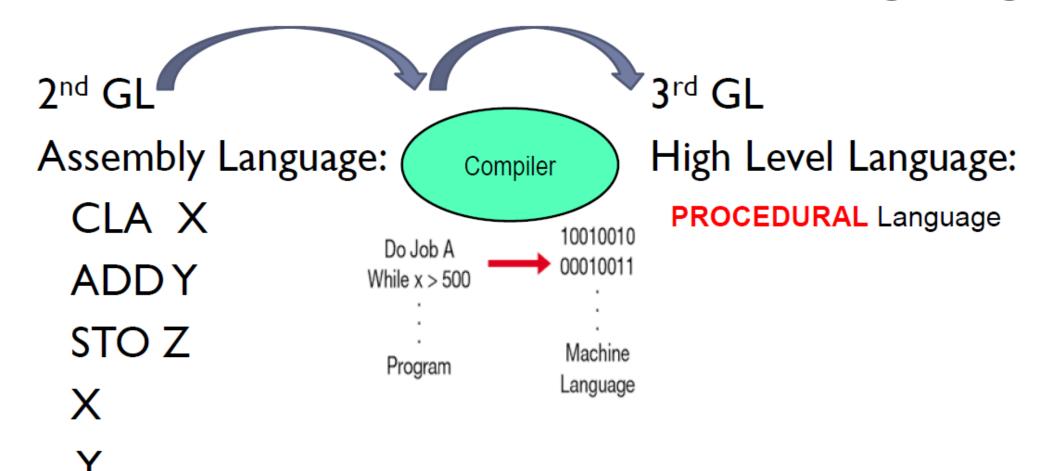
1001 0100

1010 0101


|           | /                   |           |                     |
|-----------|---------------------|-----------|---------------------|
| tharacter | ASCII-8 Binary Code | Character | ASCII-8 Binary Code |
| A         | 0100 0001           | s         | 0161 0611           |
| 10        | 0100 0616           | T         | 0161 0300           |
| ເັ        | 0100 0411           | ū         | 0101 0301           |
| D         | 0100 0300           | v         | 01010110            |
| E         | 0100 0301           | ¥         | 0101 0111           |
| P         | 0100 0110           | X         | 0101 1000           |
| 0         | 0100 0111           | Ÿ         | 0101 1001           |
| H         | 0100 1000           | Z         | 0101 1010           |
| 1         | 0100 1001           | 0         | 0011 0000           |
| 3         | 0100 1010           | 1         | 0011 0401           |
| K         | 0100 1011           | 2         | 0011 0418           |
| L         | 0100 1300           | 3         | 0011 0411           |
| н         | 0100 1301           | 4         | 0011 0300           |
| N         | 0100 1110           | 5         | 0011 0 101          |
| 0         | 0100 1111           | 6         | 0011 0118           |
| P         | 0101 0000           | 7         | 0011 0111           |
| Q         | 0101 0001           | 8         | 0011 1000           |
| R.        | 0101 0616           | 9         | 0011 1001           |

**Binary Code Table** 

Assembly Language: CLA X ADDY STO Z


2<sup>nd</sup> GL

Х



39

#### Second to Third Generation Languages



## Third to Fourth Generation Languages

High Level Language: PROCEDURAL Language

• The Algorithm:

3rd GI

- NNum = 0; SumNum=0
- While there are numbers to read
  - Read a number
  - Add I to NNum
  - Add the number to SumNum
- End While
- Average = SumNum / NNum
- Print "Average is:", Average

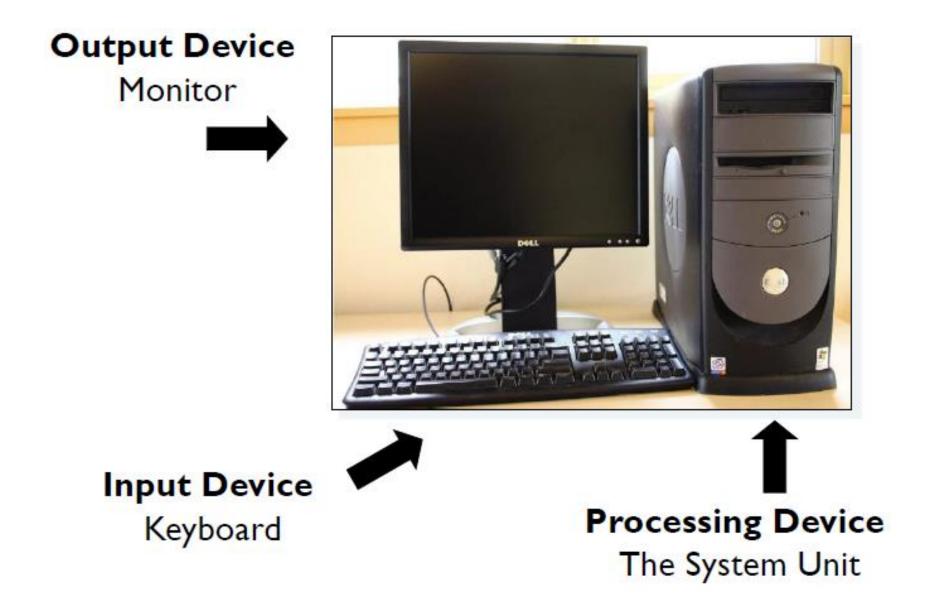
High Level Language:

#### Non-PROCEDURAL Language



4<sup>th</sup> GL

- Type in the numbers into a box
- Click a button for "Average" (using GUI)


# Generations of Programming Languages

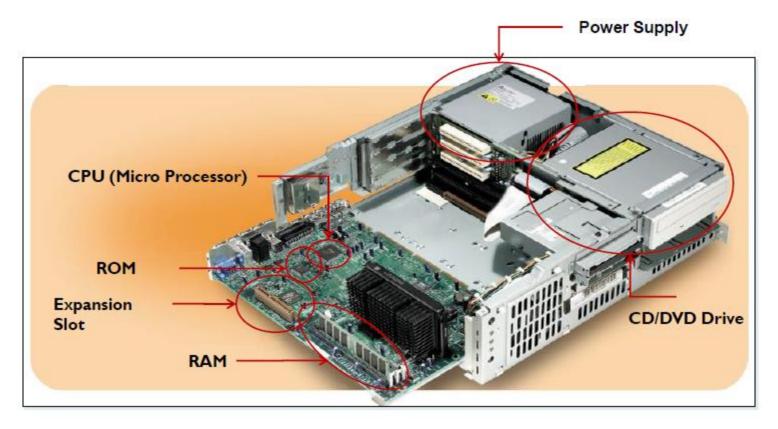
• **Programming Languages** Used to generate program instructions and have evolved over time making them more powerful, easier to read and write, and more natural language-focused

| Generations of Programming Languages |                                      |                                                                  |                                                                   |                                                                                        |  |  |
|--------------------------------------|--------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|
| 1940s                                | 1950s                                | mid<br>1950s                                                     | l 970s                                                            | 1990s                                                                                  |  |  |
| st                                   | 2 <sup>nd</sup>                      | 3rd                                                              | 4 <sup>th</sup>                                                   | 5 <sup>th</sup>                                                                        |  |  |
| <u>Machine</u><br>Binary             | <u>Symbolic</u><br>Use of<br>symbols | <u>High-Level</u><br>Use English like<br>words for<br>procedures | <u>Outcome</u><br><u>Oriented</u><br>Use outcome<br>focused words | <u>Artificial</u><br><u>Intelligence</u><br>Natural<br>language<br>(spoken<br>English) |  |  |

# Computer Hardware

#### **Computer Hardware**




### The Microcomputer

- PC or Apple
- How, specifically, are the computing principles that we saw here, implemented in a PC?
  - microprocessor (chip) is the CPU
  - much elaborate, user-friendly software
  - consists of: system unit (box), monitor (screen), keyboard, mouse, printer
- In the system unit:
  - **motherboard**, disk drives, CD-ROM drive, cards, cables, power supply

#### Motherboard

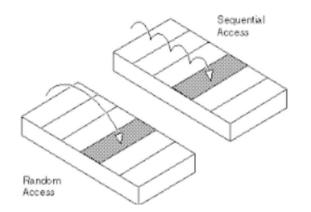
- Main circuit board: microprocessor (CPU chip), RAM (Random Access memory - main memory), buses, cards
- Intel microprocessor chips (past and present):
  - 8088, 8086, 80286, 80386, 80486, Pentium+++
  - speed in MegaHertz (Million of vibrations per second) or GigaHertz (1024 MHz)
  - all processing (calculations) done in the microprocessor

#### Processing - Mother Board Example



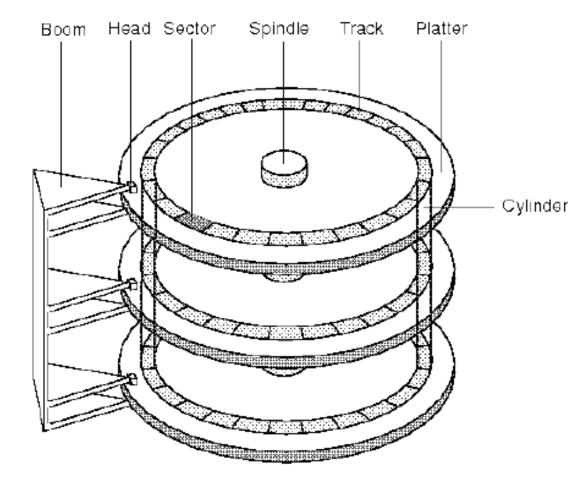
A computer's Motherboard holds or connects to all of the computer's electronic components

#### Ram/Rom / Expansion Cards\*


- **RAM**: main memory chips: 2-8 GB +.
  - Into RAM goes the **Operating System**, **Application Software**, **Data**
- **ROM** (Read Only Memory) burned-in programs to start up the computer
- **Buses** (multi-lane highways) carry instructions from memory to microprocessor and back
- Expansion Cards: circuit boards that plug into expansion slots on the motherboard;
  - Link peripheral equipment (printers, disks) with motherboard at the back of the cards are **ports**

#### Computer Storage - Primary/Secondary

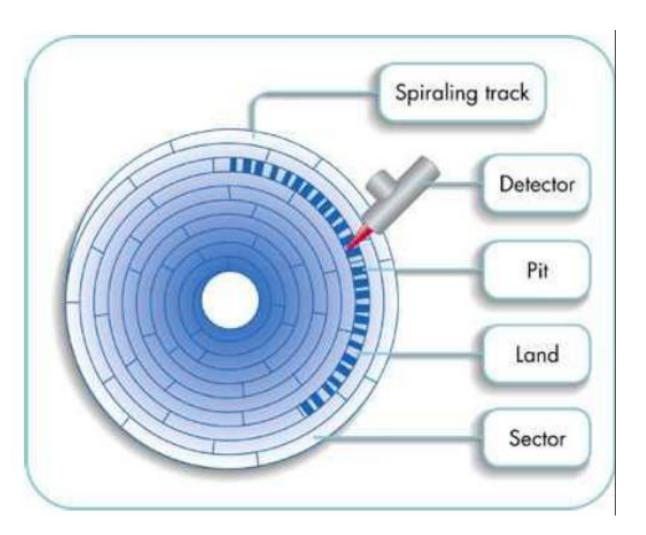
- Computer Storage
  - Primary (Internal) Storage:
    - main memory
    - stores **instructions** and **data** that are being worked on by the CPU
    - contents erased when power off
  - Secondary (External) Storage:
    - Devices that store large amounts of data, instructions, and information more permanently than allowed with memory
      - Nonvolatility
      - Greater capacity
      - Greater economy
    - Most common forms
      - Magnetic disk, tape
      - Optical Storage
      - Solid state


#### Secondary Storage Devices

- Sequential Access
  - Data must be retrieved in the order it was stored
  - Devices used are called sequential access storage devices
- Direct Access
  - Records can be retrieved in any order
  - Devices used are called direct access storage devices (DASDs)



## Magnetic Disk


- floppy or hard disk
- platters one below other
- each platter has tracks
- data stored along tracks
- info. picked up by read / write heads
- software and data taken from disk to main memory
- disk allows <u>direct access</u> as opposed to tape which is sequential

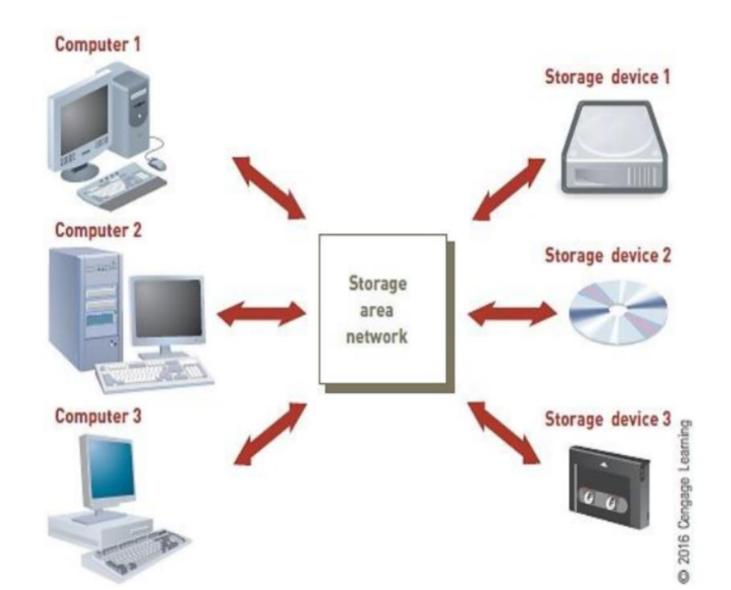


## **Optical Storage**

#### CD ROM

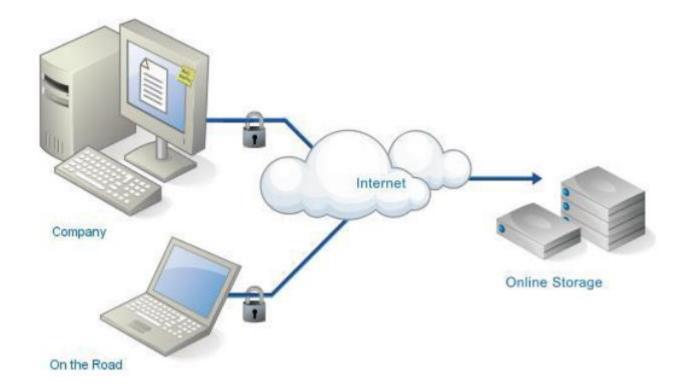
- laser light instead of magnetic form
- can store much more data in same amount of space




### Secondary Storage Devices

- Digital video disc (DVD):
  - Storage medium used to store software, video games, and movies
- Solid state secondary storage devices:
  - E.g. USB Flash Drives




- Store data in memory chips rather than magnetic or optical media
- Have few moving parts, so they are less fragile than hard disk drives
- High cost per GB of data storage
- Lower capacity compared to current hard drives

# Storage Area Network (SAN)



# Secondary Storage Devices

- Storage as a Service:
  - Data storage service provider rents space to people and organizations
  - Users access their rented storage space via the Internet



#### Outside of the System unit

- Keyboard:
  - press key, the character's ASCII code is sent down
- Monitor:
  - CRT, VDT (video display terminal)
  - had CGA, EGA, VGA, Super VGA
  - more colors, dots closer together
- Printer: Impact or non-impact
  - Dot matrix (old)
  - Ink jet
  - Laser
- Mouse:
  - for use with Graphical User Interfaces (GUIs) on the screen

#### Input Devices

#### • Devices used to input general types of data:

- Personal computer input devices
- Speech recognition technology
- Digital cameras
- Touch-sensitive screens
- Barcode Readers
- Pen input devices
- Magnetic stripe card
- Radio Frequency Identification

#### Input Devices (continued)



#### Figure 2.6

#### **RFID** Tag

An RFID tag is small compared to current bar-coded labels used to identify items.

[Source: Courtesy of Intermec Technologies Corporation.]

## **Output Devices**

- Display monitors:
  - Used to display the output from the computer
  - Plasma display:
    - Uses thousands of smart cells (pixels) consisting of electrodes and neon and xenon gases that are electrically turned into plasma to emit light
  - LCD displays:
    - Flat displays that use liquid crystals
  - Organic light-emitting diodes (OLEDs):
    - Use a layer of organic material sandwiched between two conductors



## Output Devices (continued)

- Printers and plotters:
  - Two main types of printers are laser printers and inkjet printers
  - Plotters are a type of hard-copy output device used for general design work
  - Multi-Function printers
  - 3D printers
- Digital audio player:
  - Can store, organize, and play digital music files
- E-books:
  - Digital media equivalent of a conventional printed book



#### **Computer System Types**

- Computer systems can range from desktop or portable computers to massive supercomputers
- Two major groups of general-purpose computers
  - Single-user computers with portable and non-portable option
  - Multiple-user computers

### Portable Single User Computers

• Handheld computer a compact computing device

- Typically includes a display screen with stylus or touch screen input along with a compact keyboard or numeric keypad
- Applicable as POS devices
- Rugged versions are available for military applications
- Laptop computers are designed for use by mobile users
  - Notebook and ultrabook computers are smaller than laptop computers
  - Tablet computers are portable, lightweight computers with or without a keyboard

#### Non-Portable Single-User Computers

• Handheld computer : a compact computing device

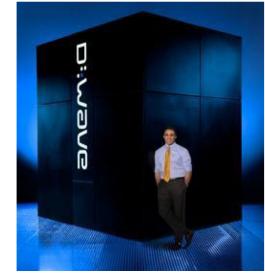
- A thin client is a low-cost, centrally managed computer with no internal or external attached drives for storage
- Desktop computers are single-user computer systems that are highly versatile



#### Non-Portable Single-User Computers

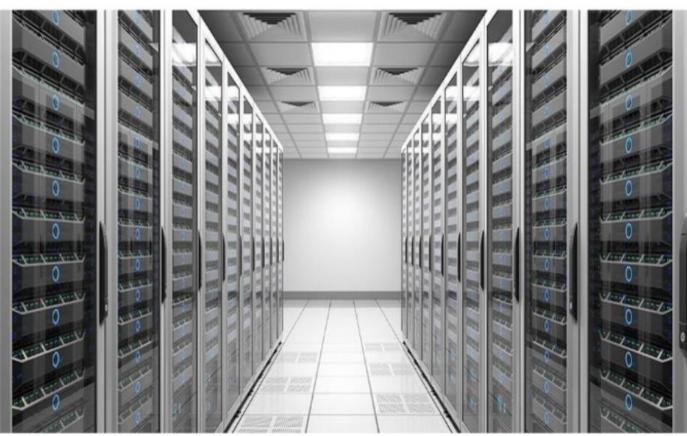
- A nettop computer is an inexpensive desktop computer
  - Smaller, lighter, and consumes much less power than a traditional desktop computer
- Workstations are more powerful than personal computers but still small enough to fit on a desktop




#### Multi-User Computer Systems

- A server is employed by many users to perform a specific task, such as running network or Internet applications
- Server systems consist of multiuser computers, including supercomputers, mainframes, and other servers
- Blade server: a server that houses many individual computer motherboards




#### **Classification of Computers**

- Supercomputers: largest, most powerful, \$\$\$;
  - perform parallel processing (Big Blue)
- Mainframes: central, many dumb terminals
- Minicomputers: smaller mainframes
- Microcomputers: can be networked; others: {e.g., portable computers, laptops, tablets, etc.
- <u>Next: Quantum Computing</u>



### Data Centers

• Data center: a climate-and-access-controlled building or a set of buildings that houses the computer hardware that delivers an organization's data and information services





### **Operating Systems and Applications**

#### Overview of Software

- **Computer programs**: sequences of instructions for the computer
- **Documentation**: text that describes program functions to help the user operate the computer system
- Types of software
  - Systems software
  - Application software

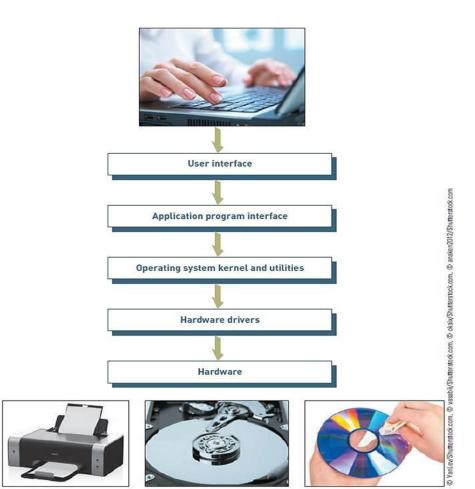
#### Application Software

- Helps users solve particular problems
- In most cases, resides on the computer's hard disk
- Can be stored on CDs, DVDs, or USB flash drives

## System vs Application Software

#### Systems Software

- The set of programs that coordinates the activities and functions of hardware and other programs
- Each type of systems software is designed for a specific CPU and class of hardware

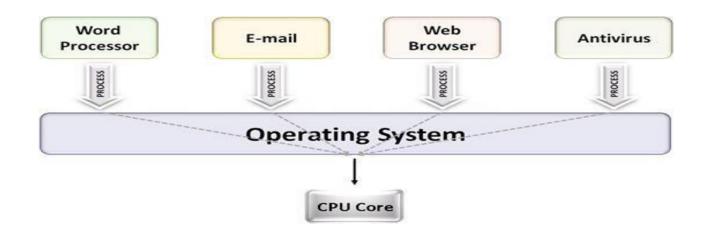

#### Application Software

- Helps users solve particular problems
- In most cases, resides on the computer's hard disk
- Can be stored on CDs, DVDs, or USB flash drives



## **Operating Systems**

• A set of programs that controls computer hardware and acts as an interface with application programs




### **Operating System Activities**

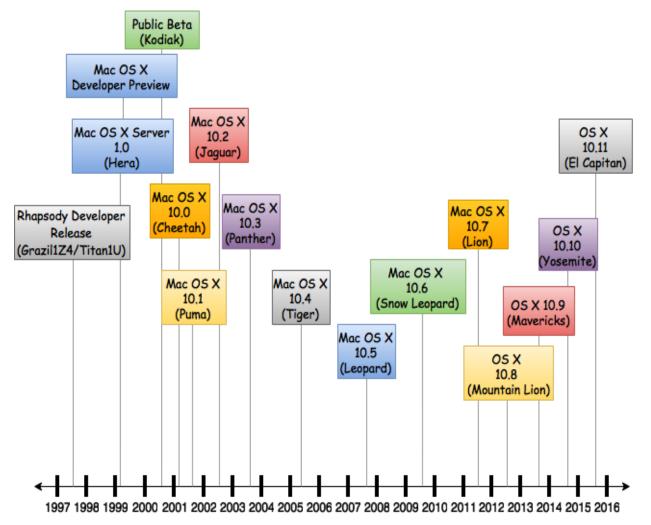
- Activities performed by the operating system:
  - Perform common computer hardware functions
  - Provide a user interface and input/output management
  - Provide a degree of hardware independence
  - Manage system memory
  - Manage processing tasks
  - Provide networking capability
  - Control access to system resources
  - Manage files

# **Operating Systems: Processing Tasks**

- Five basic task management techniques
  - Multiuser: allows two or more users to run programs at the same time on one computer
  - Multiprocessing: supports running a program on more than one CPU
  - Multitasking: allows more than one program to run concurrently
- Multithreading: allows different threads of a single Program to run concurrently
  - A thread is a set of instructions within an application that s independent of other threads
  - Real time: responds to input instantly



## **Current Operating Systems**


#### Microsoft PC operating systems

- Windows
- Windows 95
- Windows XP
- Windows Vista
- Windows7
- Windows 8
- Windows 10



### **Current Operating Systems**

- Apple Computer Operating Systems
  - 4.7 Mac OS X 10.5 Leopard.
  - 4.8 Mac OS X 10.6 Snow Leopard.
  - 4.9 Mac OS X 10.7 Lion.
  - 4.10 OS X 10.8 Mountain Lion.
  - 4.11 OS X 10.9 Mavericks.
  - 4.12 OS X 10.10 Yosemite.
  - 4.13 OS X 10.11 El Capitan.
  - 4.14 macOS 10.12 Sierra.



# Operating System(continued)

#### Linux

- Open-source operating system
- Red Hat (most common)

#### Chrome OS

- Linux-based operating system designed
- for netbooks and nettops
- Designed to run on inexpensive lowpower computers
- Chromium OS: an open-source version of Chrome OS
- Android-based apps are made available on Chromebooks which makes the platform more general-purpose than a typical thin client.
- Android: an operating system for mobile devices



# Mobile Operating Systems

| Smartphone Operating<br>System    | Worldwide Market Share<br>of Sales during 2Q 2013 | Estimated Total<br>Number of Applications<br>Mid-2013 | Estimated Rate of<br>Increase in Number of<br>New Applications |
|-----------------------------------|---------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|
| Google Android                    | 56.5%                                             | >1,000,000                                            | 800/day                                                        |
| Apple iPhone OS                   | 39.6%                                             | 900,000                                               | 600/day                                                        |
| Microsoft Windows Mobile          | 3.3%                                              | 145,000                                               | 130/day                                                        |
| Blackberry Limited,<br>Blackberry | 2.9%                                              | 120,000                                               | NA                                                             |

# **Operating Systems - Utilities**

**Utilities:** Programs that manage computer resources and files and may be included in the operating system or purchased **separately** as needed

| Utility                       | Description                                                                                                                                                                                     |    |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Backup                        | Archives files from the hard disk to a diskette or to tapes                                                                                                                                     |    |
| File defragmentation          | Converts a fragmented file stored on your hard disk (one not stored contiguously) into one that will load and be manipulated more rapid                                                         | ly |
| Disk and data recovery        | Allows the recovery of damaged or erased information from hard<br>and floppy disks                                                                                                              |    |
| Data compression              | Compresses data by substituting a short code for frequently<br>repeated patterns of data, much like the machine shorthand used<br>by court reporters, allowing more data to be stored on a disk |    |
| File conversion               | Translates a file from one format to another, so it can be used by<br>an application other than the one used to create it                                                                       |    |
| Antivirus                     | Monitors and removes viruses—lines of code designed to disrupt<br>the computer's operation and make your life miserable                                                                         |    |
| Device drivers                | Allows new hardware added to your computer system, such as a<br>game controller, printer, scanner, and so on, to function with<br>your operating system                                         |    |
| Spam blockers                 | Monitors your incoming e-mail messages and filters or blocks the<br>message from arriving                                                                                                       |    |
| Spyware detection and removal | Monitors and removes spyware from your computer (see Chapters 4<br>and 9)                                                                                                                       |    |
| Media players                 | Allows music in formats such as MP3, WMA, or WAV or video in<br>formats such as MPEG, AVI, ASF to be listened to or watched on<br>a computer                                                    | 78 |

# Utility Programs

- Help to perform maintenance or correct problems with a computer system
- Some can help computer systems run better and longer without problems
- Can help to secure and safeguard data

| Personal                                                                               | Workgroup                                                                  | Enterprise                                                                   |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Software to compress data so<br>that it takes less hard disk space                     | Software that maintains an archive of changes made to a shared document    | Software to archive contents of a database by copying data from disk to tape |
| Software that assists in<br>determining which files to<br>delete to free up disk space | Software that monitors group activity to determine levels of participation | Software that monitors network traffic and server loads                      |
| Antivirus and antispyware software for PCs                                             | Software that reports unsuccessful user logon attempts                     | Software that reports the status of a particular computer job                |

## **Application Software**

- Application programs that:-
- Interact with systems software and the systems software directs computer hardware to perform necessary tasks
- Help you perform common tasks, such as:
  - Creating and formatting text documents
  - Performing calculations
  - Managing information
  - Some applications are more specialized

## **Application Software**

#### Proprietary software:

 One-of-a-kind program for a specific application, usually developed and owned by a single company

- Off-the-shelf software: aka Commercial Off The Shelf "COTS"
  - Existing software program that is purchased
  - Application service provider (ASP):
    - Company that can provide software, support, and computer hardware on which to run the software from the user's facilities over a network

### **Overview of Application Software**

| Proprietary Software                                                                                                                                                                                                                                                        |                                                                                                                                                                                                      | Off-the-Shelf Software                                                                                                                                              |                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advantages                                                                                                                                                                                                                                                                  | Disadvantages                                                                                                                                                                                        | Advantages                                                                                                                                                          | Disadvantages                                                                                                                                                                                                          |
| You can get exactly what<br>you need in terms of<br>features, reports, and<br>so on.                                                                                                                                                                                        | It can take a long time<br>and significant resources<br>to develop required<br>features.                                                                                                             | The initial cost is lower<br>because the software<br>firm can spread the<br>development costs over<br>many customers.                                               | An organization might<br>have to pay for features<br>that are not required and<br>never used.                                                                                                                          |
| Being involved in the<br>development offers<br>control over the results.                                                                                                                                                                                                    | In-house system devel-<br>opment staff may become<br>hard pressed to provide the<br>required level of ongoing<br>support and maintenance<br>because of pressure to move<br>on to other new projects. | The software is likely<br>to meet the basic<br>business needs—you<br>can analyze existing<br>features and the perf-<br>ormance of the package<br>before purchasing. | The software might lack<br>important features, thus<br>requiring future modifi-<br>cation or customization.<br>This can be very expen-<br>sive because users must<br>adopt future releases of<br>the software as well. |
| You can modify features<br>that you might need to<br>counteract an initiative<br>by competitors or to<br>meet new supplier or<br>customer demands. A<br>merger with or acqui-<br>sition of another firm<br>also requires software<br>changes to meet new<br>business needs. | The features and<br>performance of software<br>that has yet to be developed<br>present more potential risk.                                                                                          | The package is likely to be<br>of high quality because<br>many customer firms have<br>tested the software and<br>helped identify its bugs.                          | The software might not<br>match current work<br>processes and data<br>standards.                                                                                                                                       |

#### **Overview of Application Software**

- Software as a service (SaaS):
  - Allows businesses to subscribe to Web-delivered business application software by paying a monthly service charge or a per-use fee
  - Can reduce expenses by sharing its running applications among many businesses
- Cloud computing:
  - Use of computing resources, including software and data storage, on the Internet (the cloud) rather than on local computers

# Computer Systems

End of Lecture 9